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The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow
due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube
is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and
external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes
the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and
interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are
compared with experimental measurements conducted on a flow model system using laser Doppler
vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium.
Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between
theory and experiment, as well as the coupled nature of the fluid–structure interaction, are described.
This study is relevant to and may lead to further insight into the patency and mechanisms of vascular
failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements. © 2005
Acoustical Society of America. �DOI: 10.1121/1.1953267�
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I. INTRODUCTION

Physician-based stethoscopic auscultation of blood ves-
sels has long been used as a simple noninvasive means of
qualitatively assessing their patency. Increased audible fre-
quency �sonic� sounds are associated with constrictions or
other geometric alterations in the vessel geometry. These can
be a result of plaque build-up in arteries, such as the coro-
nary or common carotid, which may lead to a localized loss
of circulation. A constriction can also result from intimal
thickening, which commonly occurs near arteriovenous �AV�
grafts that are used for dialysis patients. In recent years there
has been growing interest in the correlation of sonic phenom-
ena with vascular pathology from two perspectives, mecha-
nistic and diagnostic.

First, from a mechanistic point of view, it is believed
that identifying the cause and effect relationships between
sonic phenomena and other symptoms associated with vas-
cular pathology could lead to improved surgical practices or
treatments. For example, consider AV grafts and venous
anastomotic intimal hyperplasia �VAIH�. Individuals with
end-stage renal disease would die within a few weeks or
months if not sustained by some form of dialysis therapy or
a kidney transplant. An AV graft is constructed by the joining
of an artery to a vein to provide an access site for hemodi-
alysis patients. By bypassing the high resistance vessels �ar-
terioles and capillaries�, high flow rates can be achieved that
are necessary for efficient hemodialysis. A synthetic graft
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material, polytetrafluoro-ethylene �PTFE�, is often used for
these grafts. More than half of the AV grafts fail and require
surgical reconstruction within 3 years.1 The majority of these
graft failures is caused by occlusive VAIH, which is charac-
terized by a narrowing or stenosis of the vein downstream of
the graft junction. While the natural healing response after
surgery causes some degree of intimal thickening, the bio-
mechanical environment appears to be responsible for pro-
gression of intimal thickening to occlusive VAIH. Biome-
chanical forces in the AV graft are unique, with generally
high wall shear stress �WSS� acting on the vein, flow sepa-
ration, and significant pressure fluctuations that vibrate the
vein wall and surrounding tissue. Studies in a canine animal
model have shown that perivascular tissue vibration is corre-
lated with VAIH �r=0.92, p�0.001�.2 Vibration likely oc-
curs as a result of the transitional and turbulent flow patterns
that exist in the AV graft due to the high flow rate and com-
plex geometry.3,4 An obvious question is whether this vibra-
tion has helped to catalyze or accelerate VAIH, or is it
merely a benign symptom. If it is the former, then perhaps a
modified graft geometry or construction should be consid-
ered in order to minimize this vibration.

Second, from a diagnostic viewpoint, whether or not
turbulence-induced tissue vibration is an exacerbating cata-
lyst of pathology or merely a benign by-product, its exis-
tence affords its use as a diagnostic indicator. To have quan-
titative utility and to be independent of individual physician
skill and experience, a more rigorous analysis of the sonic
phenomena is needed than can be obtained via the human ear

and stethoscopic auscultation. In this context, there have
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been numerous studies reported in the literature for more
than three decades that have empirically and stochastically
correlated sonic acoustic “signatures” with associated
pathology.5–17 A common observation in these studies is that
sound intensity tends to increase with stenosis severity �until
occlusion becomes nearly total�, especially at audible fre-
quencies on the order of hundreds of hertz
��100 to 1000 Hz�, and that this sound is associated with
turbulence in the stenosed vessel distal to the constriction.
Some have sought to put this into a diagnostic “imaging”
format via use of a two-dimensional array of acoustic trans-
ducers mounted on the skin surface that can be used to pas-
sively beamform on the sonic source.18,19 Others have shown
that the Doppler mode of conventional ultrasound �US� im-
aging technology can be used to roughly quantify the level of
tissue vibration associated with VAIH in AV grafts.2 Simi-
larly, another study reported the development of an ultra-
sonic pulse–echo multigate technique using quadrature phase
demodulation to obtain simultaneous measures of tissue vi-
bration and blood velocity at multiple depths, again showing
correlation in a case study of a severe stenosis in a human
infrainguinal vein by-pass graft.20

A barrier to further refinement of diagnostic techniques
or improved mechanistic comprehension is the limited un-
derstanding of the complex and coupled transitional or tur-
bulent fluid and structural dynamics of the constricted blood
vessel embedded in viscoelastic soft tissue layers. Numerous
empirical and semiempirical models have been proposed to
correlate measurements of the turbulent pressure field down-
stream of the occlusion with the geometry of the occluded
vessel and the flow rate.5,8–12,16 Note that, even for relatively
simple geometries, an exact solution using computational
fluid dynamic �CFD� simulations is as of yet unavailable for
the case of transitional fluid behavior and compliant vessel
wall dynamics. Accurate CFD simulations for transitional
flow problems with anatomically correct, yet assumed rigid
vessel walls require substantial CPU time and are just now
being reported.3,4

Other studies have attempted to model the relationship
between the turbulent field and resulting vessel
vibration.6,12,21 These studies have essentially noted that the
tube-wall vibration spectra can differ significantly from the
turbulence spectra as a result of the tube’s frequency-
dependent mobility. Additionally, it still remains somewhat
unclear as to which scenario is more prevalent: �1� broad
turbulence generates wall vibrations with some resonant
spectral content that may subsequently cause coherent oscil-
lations in the blood flow; or �2� coherent vortex shedding of
the blood flow causes wall vibrations with distinct spectral
content.20 Still others have then tried to predict measure-
ments by surface sensors, accounting for intervening tissue
layers.16,18 In addition to axisymmetry of the blood vessel
and constriction, Ref. 16 assumed that the surrounding soft
tissue is also axisymmetrically arranged about the vessel.
The surrounding tissue is then treated as another fluid me-
dium, only supporting compression waves, not shear or sur-

face waves. On the other hand, Ref. 18 only considered shear
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wave radiation in the soft tissue from the turbulent source,
assigning general attenuation rates to it based on geometric
spreading and material viscosity.

Almost absent from the literature is a closed-form theo-
retical model of the entire coupled fluid/structure problem,
starting from the generation of turbulence, the corresponding
vessel wall vibration, and resulting surrounding tissue vibra-
tion. As noted above, a few studies have attempted this, but
with the indicated limiting assumptions.16,18 The present ar-
ticle reviews a theoretical and experimental study that en-
deavors to improve the fundamental understanding of this
complex, coupled problem by considering a simple, axisym-
metric, constricted vascular phantom model, in terms of its
individual components as well as the assembled, coupled
system. Laser Doppler vibrometry and miniature catheter hy-
drophone measurements provide an extensive experimental
quantification of the fluid and structural behavior. While the
theoretical model for fluid turbulence must be empirical,
given the current state of the art, the remainder of the closed-
form analytical model is based on first principles. Low-
amplitude displacements of the vessel wall and surrounding
tissue are assumed, which enables a linear treatment of the
solid tissue dynamics. While this assumption should enable
one to capture much of the dynamic phenomena present in
vivo and in the in vitro phantom model described in this
article, it is acknowledged that some documented phenom-
ena will not be predicted. For example, flexible tube col-
lapse, or buckling, after a stenosis due to the lowered intralu-
minal pressure has been reported in vivo and carefully
studied in vitro. It can occur under both laminar and turbu-
lent flow conditions. This involves large deformation of the
lumen and requires nonlinear analysis, and is not within the
scope of this article. See Ref. 22 for a review of this topic
and its biological applications.

In the present article, experiments and theoretical devel-
opments are reviewed that attempt to quantify the fluid en-
vironment, its coupling to the vessel wall, and the resulting
sound radiation into media exterior to the vessel wall. It is
emphasized that the focus here is on developing a closed-
form analytical model that may yield unique insight. Conse-
quently, this article is divided into the following sections:

�1� description of the constricted flow phantom model and
experimental measurement methods;

�2� adaptation and experimental evaluation of an empirical
model for fluid turbulence;

�3� development and experimental evaluation of a theoreti-
cal model for fluid–vessel coupling; and

�4� development and experimental evaluation of a theoreti-
cal model for radiation into surrounding fluid or vis-
coelastic medium, including measurement of the sonic
phenomena on the surface of a viscoelastic medium
within which the constricted vessel is embedded.

II. THE AXISYMMETRIC CONSTRICTED FLOW MODEL

A. The experimental model

A simple axisymmetric tube geometry and flow constric-
tion is considered. The compliant fluid-filled latex tube �La-

tex Penrose Tubing, Sherwood Medical, St. Louis, MO� is
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externally unconstrained �except at its ends� or lies just be-
low and parallel to the horizontal free surface of a water-
filled container or gel phantom model, as indicated in Fig. 1.
Approximately 5% axial strain is imposed on the latex tube
in all cases to prevent sagging in the externally uncon-
strained case. The experimental model geometry and param-
eter values are provided in Fig. 1 and Table I. Gravity-fed
flow rates producing Reynold’s �Re� numbers sufficient for
turbulent generation downstream of the constriction and
within the regime of biological relevance are considered. By
adjusting the height of the upper water reservoir and adjust-
ing a valve downstream of the compliant tube section, the
flow rate and mean pressure within the compliant tube sec-
tion are independently controlled. Degassed water is used.
Steady flow rate conditions are used, as the frequency band
of dynamic response associated with turbulent behavior is
above and well separated from low-frequency dynamics as-
sociated with the pulsatile nature of blood flow in vivo.11

B. Experimental measurement methods

Mean and dynamic pressure within the tube, tube radial

FIG. 1. �Color online� Experimental system. �a� Schematic. �b� Photograph
of compliant tube embedded in gel phantom. Retroreflective tape visible on
gel surface.
wall velocity, and gel phantom vertical velocity �when
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present� were measured for various flow conditions. Pressure
measurements were made using a catheter-type pressure
transducer �SPR-524, Millar, Houston, TX�, with a band-
width of �10 kHz according to the manufacturer. The pres-
sure transducer had a 1.08-mm-diameter tip where the active
element was located at the end of a 0.71-mm-diameter wire.
The tip was fed into the flow system from the downstream
side through a sealed connector. The pressure measurements
were made in 2.5-mm increments from 2.5 to 100 mm
downstream of the constriction. The radial position within
the tube of the catheter tip was consistently closer to the tube
wall than the tube axis.

A noncontacting laser Doppler vibrometer �LDV� �CLV
800-FF/1000, Polytec, Auburn, MA� with threshold sensitiv-
ity of �1 �m/s, low-pass filtered at 5 kHz, was used to
measure tube and phantom surface velocity. Small pieces of
adhesive retroreflective tape �3M, St. Paul, MN� measuring
�1�1 mm were placed on the tube and phantom surface to
improve the LDV signal. When used on the tube surface,
reflective tape pieces were spaced 2.5 mm apart along the
flow direction of the 100-mm tube, resulting in 41 data
points �coinciding with internal pressure measurement
points�. On the phantom surface, they were spaced in 2.5
-mm increments along the tube axis and 2.5- or 5-mm incre-
ments lateral to it �see Fig. 1�b��. Tube radial velocity was
also measured in some cases when the tube itself was sub-
merged in water or buried in the tissue-mimicking phantom.
This measurement was more challenging because of the par-
tial scattering of laser light at the water and phantom sur-
faces, which were in motion due to the turbulence-generated
vibration; measurements through the phantom material dur-
ing the higher flow rate case were not possible.

A two-channel digital dynamic signal analyzer �35670a,
Agilent, Palo Alto, CA� was used to capture the experimental

TABLE I. Experimental system parameter values.

Parameter Value

Inner diameter of flexible tube �D� 6.4 mm
Diameter of constricted zone �d� 2.3 mm
Length of flexible tube �L� 100 mm
Wall thickness of flexible tube �h� 0.3 mm
Distance from gel or water surface to top of latex tube
�hg�

6.5 mm

Density of latex tube material ��L� 1086 kg/m3

Young’s modulus for latex tube materiala �EL� 800 kPa
Linear viscous loss factor for latex tube materialb ��� 2�10−4 s
Poisson’s ratio for latex tube materiala ��� 0.495
Water densityc �� f� 1000 kg/m3

Speed of sound in waterc �Cf� 1490 m/s
Phantom gel density �Ref. 31� ��e� 1000 kg/m3

Phantom gel volume elasticity �Ref. 31� ��1� 2.6 GPa
Phantom gel shear elasticity �Ref. 31� ��1� 4.5 kPa
Phantom gel shear viscosity �Ref. 31� ��2� 4 Pa s

aBased on quasistatic measurements in lab.
bBased on comparing theoretical predictions to experimental results in Figs.
6 and 7.
cValues based on nominal room temperature of 21 °C at atmospheric pres-
sure.
data. The acquired signals were processed using the signal
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analyzer and postprocessed with MATLAB V7.0. Time data
were acquired at a 4096-Hz sample rate with the correspond-
ing 120-dB/decade antialias filter set at 1600 Hz. The auto
power spectra of 64 independent time records were averaged
for each measurement point for each case.

III. AXISYMMETRIC FLOW CONSTRICTION AND
TURBULENT FLOW

A. Theory based on empirical analysis of compliant
wall studies

As noted in the Introduction, there have been numerous
studies of flow in cylindrical channels with axisymmetric
constrictions that are similar to the one depicted in Fig. 1�a�
Researchers have theoretically, computationally, and experi-
mentally analyzed the turbulent flow field in both relatively
rigid and compliant tubes. Results and derivations reported
in several specific articles were found to be most useful for
the present analysis.9,18,23

TABLE II. A tabular approximation of Fn1�x /D� based on Fig. 12 of Tobin

x /D 0 1 1.5 2 2.5

Fn1�x /D� 0 0.02 0.03 0.0355 0.0355 0

FIG. 2. �Color online� Acoustic pressure �dB re : 1 Pa� near wall inner surf
a tube with a constriction ending at 0 mm. �a� Theory. �b� Experiment in co

rigid tube. Online version uses color scale for dB.
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Given the axisymmetric tube and constriction, it is as-
sumed that the pressure distribution on the inner tube wall is
also axisymmetric. The dynamic �acoustic� pressure p�x , t� is
only dependent on one spatial variable, the axial location x
along the tube, as well as time, t. Its dependence on time and
its dependence on x, are random, but with underlying time-
averaged trends.23 The turbulent coherent structures that pro-
duce dynamic pressure variations are assumed to propagate
down the tube at a mean speed equal to the steady-state flow
speed, but with significant random variation in the speed.
Consequently, while p�x , t� is random, a deterministic spec-
tral approximation may be reasonable. A deterministic ex-
pression for p�x , f�, where f is the cyclic frequency in hertz
�Hz�, will be developed based on the literature.

Tobin and Chang9 studied steady flow of water in a
straight, compliant �latex rubber� cylindrical tube of diameter
D=7.94 mm with a constricted region of various diameters
d. The latex tube rested horizontally on 100 mm of cotton
batting to isolate it from building vibrations. The tube itself

Chang �Ref. 9�.

4 6 8 10 15 70

0.01 0.004 0.003 0.0025 0.002 0.002

s function of axial position and frequency for ReD=1000. All cases are for
nt tube in air. �c� Experiment in compliant tube in water. �d� Experiment in
and

3
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was estimated to have an elastic modulus at the upper limit
of the vascular physiological range, though no specific tube
material property values were provided. The blunt and axi-
symmetric constriction was 12.7 mm long, and five different
d /D ratios resulting in 75% to 95% reductions in area were

FIG. 3. �Color online� Acoustic pressure �dB re : 1 Pa� near wall inner surf
a tube with a constriction ending at 0 mm. �a� Theory. �b� Experiment in co
rigid tube. Online version uses color scale for dB.

FIG. 4. �Color online� Acoustic pressure �dB re : 1 Pa� near wall inner sur-
face as function of axial position and frequency for ReD=2000 in an uncon-

stricted compliant tube �experiment�. Online version uses color scale for dB.

J. Acoust. Soc. Am., Vol. 118, No. 2, August 2005
considered. A wall pressure tap of diameter 1.75 mm was
located downstream of the stenosis. Flow velocities, U, rang-
ing from 60–500 mm/s and associated Reynolds numbers,
based on D and U �ReD� of 500–4000 were considered. The
pressure sensor used at the tap was capable of measuring the
dynamic response at least up to 2000 Hz.

For a range of ReD=1500 to 4000 they found a fairly
consistent relationship between the dynamic root-mean-
square wall pressure prms and the distance x downstream
from the stenosis such that

s function of axial position and frequency for ReD=2000. All cases are for
nt tube in air. �c� Experiment in compliant tube in water. �d� Experiment in

FIG. 5. Constricted tube mean fluid pressure �mm Hg gauge� as a function
of axial position. Key: ——— ReD=1000, compliant tube; --- ReD=1000,
ace a
mplia
rigid tube; – – – ReD=2000, compliant tube; –-– ReD=2000, rigid tube.
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prms = �uj
2 d

D
Fn1�x/D� , �1�

where Fn1 denotes a nonlinear relationship, � is the fluid
density, uj is the spatial mean systolic jet velocity in the
constriction, and x is the distance downstream from the end
of the constriction.

For this same range of Reynolds numbers and constric-
tions, Tobin and Chang9 also identified a consistent relation-
ship between the power spectral density E�f� and frequency f
at the position x /D, where prms is maximum such that

E�f� �
p�f�2

�f
= �2Duj

3� d

D
�2

Fn2�fD/uj� , �2�

where Fn2 denotes a nonlinear monotonic relationship and
p�f�2 /�f denotes the power spectral density of the wall pres-
sure variation as a function of frequency f and dependent on
the filter bandwidth that was used, such that the units are
pascals2 /Hz. As the nondimensional frequency increases
�beyond the corner frequency� the log–log spectra ap-
proach a negative slope of 5.3. Specifically, a curve fit to
the data in Ref. 9 yields

Fn2�fD/uj� =
0.002 08

1 + 20�fD/uj�5.3 . �3�

Also, note that

prms
2 = 	p�t�2
 = � 1

T
�

0

T

p�t�2dt� = �
0

	

E�f�df , �4�

where T is a suitable averaging time such that the value has
asymptotically converged. The above formula can be used to
approximate, let’s say, the root-mean-square pressure value
between frequencies f − 1

2 Hz and f + 1
2 Hz such that

prms�f� � �D1/2uj
3/2� d

D
��Fn2�fD/uj��1/2. �5�

Next, by taking the spectral content in this 1-Hz band to be
concentrated at f and in phase, one could express this
component of the spectrum in the following form:

p�ej2
ft,� f� = 2�U3/2D5/2

d2 �Fn2�fd2/UD��1/2ej�2
ft+�f�.

�6�

In this expression the term � f denotes an unknown phase
angle. Under this condition, and taking x /D at the point of
the maximum value for prms, then, based on Fig. 12 of Ref.
9

prms � ��
f=1

	

�p�ej2
ft,� f��2�1/2

� �U2D3

d3 Fn1�xmax/D�

� �U2D3

d3 �0.0355� . �7�

According to Ref. 9, the spectral distribution of the wall
pressure variation at different downstream positions main-
tains the same general form as at the point of maximum prms,

but does vary to some degree. Specifically, as one moves
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downstream from near the position of maximum pressure,
both the amplitude and corner frequency of the spectrum
decrease. However, quantitative measurements are not
provided. In the present treatment, it will be assumed that
the relative spectral distribution will stay the same, but be
attenuated in overall amplitude to correctly follow the prms

level as it decreases when one moves away from its maxi-
mum location.

Specifying a value for � f is another matter. This issue is
taken up in some detail by Keith and Abraham23 for the more
general case of turbulent pressure flow over a wall. The base-
line assumption is that the turbulent wall pressure convection
velocity uc matches that of the stream velocity. Owsley and
Hull18 have assumed that the turbulent wall pressure convec-
tion moves axially at the jet velocity uj of the stenotic con-
striction. Then, one would have that the phase difference,
�� f, as a function of frequency f between two points sepa-
rated by a distance �x would equal 2
f�x /uj. However,
studies have shown that this simplifying assumption results
in an overprediction of cross-spectral properties between two
different axial locations of wall pressure measurement. Its
effect on predictions of sound radiation to points exterior to
the flow tube is unclear. A more accurate model would ac-
count for the fact that, near the wall, flow is slower than
along the central axis of the flow tube. Larger, coherent
structures of lower frequency are located more toward the
axial center with smaller structures near the wall. The small
structures, however, dissipate more rapidly with distance
from the stenosis, and the larger structure’s effect on wall
pressure variations may become relatively more prominent
further downstream. It follows that uc may be a complex,
frequency-dependent quantity. In the present study, the ap-
proximation used by Owsley and Hull18 is followed.

These assumptions lead to

p�ej2
ft,x,� f� = P0ej�2
f−�f� = 1.82Fn1�x/D��U3/2

�
D5/2

d2 � 1

1 + 20�fd2/UD�5.3�1/2

ej�2
ft−�f�,

�8a�

where

� f�f ,x� =
2
fxd2

UD2 . �8b�

Here, Fn1�x /D� is the value interpolated from Fig. 12 of
Tobin and Chang.9 Linear interpolation via a tabular approxi-
mation was used in simulations reported here and is provided
in Table II. Note that the studies in Ref. 9 were conducted
with different flow constrictions and upstream pressures to
achieve different Reynold’s numbers and percent area
stenoses. Apparently, no attempt was made to ensure that
the mean pressure downstream of the constriction was
consistent.

B. Theoretical predictions and experimental
measurements

Based on the above theoretical analysis, and given the

geometry of the experimental system provided in Fig. 1 and

Yazicioglu et al.: Radiation from tube with turbulent flow



Table I, predictions of the acoustic pressure on the wall inner
surface as a function of axial distance downstream of the
constriction exit and as a function of frequency were com-
puted �Figs. 2�a� and 3�a�� for flows with ReD of �1000 and
�2000. �This calculation is made neglecting a �2.8% in-
crease in D in the compliant tube due to the internal mean
pressure of �15 mm Hg.� This corresponds to Reynold’s
numbers in the rigid constricted zone of Red equals 2783 and
5565, respectively. It is apparent that the greatest acoustic
pressure amplitude occurs roughly 15 mm downstream of
the constriction exit for both cases. Spectral content up
through several hundred hertz is significant, but then attenu-
ates at higher frequencies.

As described in Sec. II B, internal mean and dynamic
pressure measurements were made using a miniature catheter
hydrophone. It is recognized that the presence of the hydro-
phone likely will alter the flow field. Additionally, the hydro-
phone is not acquiring a pressure measurement directly at the
channel inner wall, but rather at a location within the flow
channel near the wall. Measurements were obtained for flow
rates of ReD= �1000 and �2000, within the compliant latex
tube, as well as within a more rigid, hard plastic tube of the
same inner dimensions, in order to assess the effect of tube
wall compliance on the flow field. Measurements were also
obtained in compliant and “rigid” tubes with the axisymmet-
ric flow constriction removed.

Selected results are presented in Figs. 2–5. In comparing
theoretical predictions to experiment, it appears that the
theory has captured some of the general trends, both in terms
of amplitude and spatial-spectral distribution, though the
match is not perfect. In the experiment, the maximum pres-
sure appears to be closer to 10–13 mm downstream of the
constriction, as opposed to 15 mm. This discrepancy may be
due in part to the hydrophone position. As the turbulent field
spreads radially after exiting the constriction, it will reach
the hydrophone before it reaches the tube wall. Additionally,
the presence of the hydrophone may cause turbulence to oc-
cur earlier at a position further upstream.

There are other downstream spatial-spectral features evi-
dent in the experimental measurement that are not evident in
the theoretical predictions, particularly observable in the
ReD=2000 case. In comparing experimental measurements
for the constricted compliant tube versus a constricted rigid
tube, the downstream spectral content is very different,
which suggests that it is coupled with the tube wall dynam-
ics. Note that the band of increased vibration that occurred
along the entire length of the rigid test section at around
250–300 Hz was also present, though to a far less extent, for
a rigid tube without a flow constriction �measurements not
shown�. An experimental modal analysis of the test setup
indicated that a beamlike bending resonance of the rigid tube
was present with a spectral peak in the 250–300 Hz range; it
is suspected that this resonance may have been excited by
flow dynamics and in turn increased the spectral content of
the dynamic pressure measured in the fluid.

For the compliant tube cases, multiple bands of in-
creased vibration along the length of the axis appear; these
generally disappear, or at least recede to below the noise

floor when the constriction is removed. These bands, which
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are not predicted by theory, are not due to the presence of the
hydrophone in the flow channel, as they also appear to affect
the vibration of the compliant tube �shown later� even when
the hydrophone was not inserted. �In all constricted compli-
ant studies, vibration of the compliant tube was identical
with respect to whether or not the hydrophone was present.�
Additionally, axisymmetric resonant modes of tube vibration
are evident in the pressure readings, particularly in Figs. 3�b�
and 3�c�. Note that in one unconstricted study in the compli-
ant tube at ReD=2000, when the hydrophone was placed at
roughly 30 to 100 mm from the compliant tube entrance, tur-
bulence was generated that appeared to be caused by the
hydrophone’s presence �Fig. 4�. For the same unconstricted
test in a rigid tube, no turbulence occurred. Likewise, at
ReD=1000, in rigid and compliant tubes without constric-
tions, no turbulence occurred.

Overall, spectral bands downstream of the constriction
do appear to be altered by the flow rate �Re�, whether the
tube is rigid or compliant, and, in the case of the compliant
tube, also depend on the mean fluid pressure and whether
external fluid loading is present. Hence, they are associated
with coupled fluid and structural dynamics, which are not
captured using the simple theory proposed here and likely
would not be accurately predicted using a more complex
theory or numerical �CFD� simulation that did not account
for compliant walls. While the mean pressure did drop im-
mediately downstream of the constriction �Fig. 5�, it re-
mained above atmospheric pressure in this experiment, and
large deformation buckling or tube collapse was not ob-
served.

IV. FLUID–VESSEL COUPLING

A. Theory

1. Tube of infinite length

Consider a cylindrical tube of radius “a” and thickness “
h” that is infinite in length. It will be assumed that the tube
material is isotropic, and the tube itself can be considered to
be thin �e.g., h /a�0.1�. Extensions of the analysis to the
case of orthotropy24 and “thick shell” theory are relatively
straightforward but introduce additional complexity that is
not relevant to the present analysis. The vibrational motion
of a thin, isotropic cylindrical elastic shell can be described
by the Donnell–Mushtari �DM� equations.25 In addition to
the assumption that h /a is small, this theory also assumes
that resulting shell dynamic displacements are small, trans-
verse normal stress acting on planes parallel to the shell
middle surface are negligible, and fibers of the shell normal
to the middle surface remain so after deformation and are
themselves not subject to elongation. Presence of a com-
pressible fluid within and/or exterior to the shell and the
resulting fluid–structure interaction has been considered.26–29

Alternative derivations for thicker shells have been applied
to this problem with interior fluid, including use of the Ken-
nard shell equations, which add a few additional terms to
account for curvature but do not increase the degrees of
freedom.28 Use of first-order shear deformation theory to
augment the DM theory, which adds two rotational degrees

of freedom to account for shear deformation through the
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shell thickness, has also been considered in conjunction with
compressible fluid interior and exterior to the shell.29

Consider harmonic line forces applied around the cir-
cumference of the tube at axial position x0 and specified by

pt�x0,�,t� = Ft cos�n���x − x0�ej�t, �9�

where Ft is force per unit length,  denotes the Dirac delta
function, � is the azimuthal angle in the tube with �=0 de-
noting vertically up, �=2
f , and n=0,1 ,2 , . . . . The excita-
tion of the tube wall due to interior turbulent flow is approxi-
mated by resolving it into a finite number of such line forces.
Given the case of harmonic excitation, it is convenient to
express the shell displacements and applied forces in terms
of inverse Fourier transforms in the axial wave number kns,
here taking the case that x0=0.27

u =
1

2

�
n=0

	

�
s=0

	 �
−	

	

Ūns cos�n��ej�−knsx+�t+
/2��kns, �10�

v =
1

2

�
n=0

	

�
s=0

	 �
−	

	

V̄ns sin�n��e−j�knsx−�t��kns, �11�

w =
1

2

�
n=0

	

�
s=0

	 �
−	

	

W̄ns cos�n��e−j�knsx−�t��kns, �12�

p̄t = �1/2
�Ft cos�n��ej�t. �13�

Here, u, v, and w denote vibratory displacements in the axial,
azimuthal, and radial directions, respectively. One obtains
the following by inserting these expressions into the DM
equations and utilizing orthogonality of the n and s compo-
nents in the summations in Eqs. �10�–�12�:

�L11 L12 L13

L21 L22 L23

L31 L32 L33
��Ūns

V̄ns

W̄ns

� = � 0

0

�2Ft/2
�sh�2 � , �14�

with

L11 = − �2 + �knsa�2 + n2�1 − �

2
� , �15a�

L12 = L21 = n�knsa��1 + �

2
� , �15b�

L13 = L31 = ��knsa� , �15c�

L22 = − �2 +
1 − �

2
�knsa�2 + n2, �15d�

L23 = L32 = n , �15e�

and

L33 = 1 + �2��knsa�2 + n2�2 − �2 − FLi − FLe, �15f�

where FLi and FLe, respectively, account for internal and
external fluid loading in the coupled problem. It is as-

sumed that these are compressible fluids that satisfy the
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acoustic wave equation in cylindrical coordinates. To en-
sure the fluid remains in contact with the tube wall, the
fluid radial motion and the tube radial motion must be
equal at the interface of the tube and fluid. If the shell is
submerged in a compressible fluid of infinite extent, this
coupling condition results in the following expressions:

FLi = �2 �i

�shkri
� Jn�kria�

Jn��kria�� , �16�

FLe = �2 �e

�shkre
� Hn

�2��krea�
Hn�

�2��krea�� , �17�

where

�2� cL

ci
�2

= �knsa�2 + �kria�2, �18a�

�2� cL

ce
�2

= �knsa�2 + �krea�2, �18b�

� = �a/cL, �18c�

and

cL = E�1 + j���/�s�1 − �2� . �18d�

Here, Jn and Hn
�2�, respectively, refer to an nth-order Bessel

function of the first kind and an nth-order second Hankel
function, which denotes outgoing wave propagation con-
sistent with the convention ej�t denoting harmonic motion.
Also, the primes on Jn and Hn

�2� denote differentiation with
respect to the arguments kria and krea, respectively. If the
external fluid does have finite boundaries, then the expres-
sion in Eq. �17� would need to be modified. Additionally,
�s, �i, and �e refer to the density of the shell �tube� mate-
rial, internal fluid, and external fluid, respectively. And,
cL refers to the complex extensional phase speed of the
tube material, dependent on its Young’s modulus, E, lin-
ear viscous loss factor, �, density, �s, and Poisson’s ratio
�.

Then, the spectral radial displacement amplitude �as a
function of �knsa�� is

W̄ns = � �2Ft

2
�sh�2�I33, �19a�

where

I33 = �L11L22 − L12L21�/�L� . �19b�

Application of the inverse transform gives the radial dis-
placement as

w�x/a,n,s� =
�2Ft

2
�sha�2�
−	

	

I33e
−j�knsa��x/a�d�knsa�

= Yns�x/a�F0/j� , �20�

where Yns�x /a� is the transfer mobility for a particular

branch s and circumferential mode of vibration n such that
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ẇ�x/a,n,s�
Ft

= Yns�x/a�

=
j�2

2
�sha�
�

−	

	

I33e
−j�knsa��x/a�d�knsa� . �21�

By utilizing the theorem of residues, the transfer mobility
�i.e., response at x due to excitation at x0=0� can be written
as the sum of the residues evaluated at the poles: i.e.,

Yns�x/a� =
�2

�sha�
�
s=1

	

Re ss, �22a�

where Re ss =
�L11L22 − L12L21�e−j�knsa��x/a�

�det�L���
, �22b�

where the prime denotes the derivative with respect to �knsa�.
To couple this analysis with the analysis of the turbulent

field in the previous section, the line force Ft is obtained by
taking the axisymmetric �n=0� pressure calculation from the
turbulent analysis and approximating it as a circumferential
line force in terms of short segments along the cylinder. So,
Ft= P0

��L, where �L is made small enough that the results
asymptotically converge. Note that, if pressure data were
available from, say a numerical simulation that involved a
nonaxisymmetric constriction and a resulting nonaxisymmet-
ric pressure distribution, higher azimuthal order �n�0� com-
ponents could be used to predict the resulting nonaxisym-
metric tube vibration.

2. Tube of finite length

The compliant section of tube of length L in the experi-
mental setup �Fig. 1� is approximated as pinned at its ends
such that simply supported boundary conditions exist. Adapt-
ing the above analysis for the harmonic line force and finite
length shell yields

u = �
n=0

	

�
m=1

	

Unm cos�m
x/L�cos�n��ej�t, �23�

v = �
n=0

	

�
m=1

	

Vnm sin�m
x/L�sin�n��ej�t �24�

w = �
n=0

	

�
m=1

	

Wnm sin�m
x/L�cos�n��ej�t. �25�

Again, by insertion of these expressions into the DM equa-
tions and utilizing the orthogonality of the mode shapes, de-
lineated by m and n, this leads to

�L11 L12 L13

L21 L22 L23

L31 L32 L33
��Unm

Vnm

Wnm
� = � 0

0

2�2Ft sin�kmx0�/L�sh�2 � ,

�26�

with

L11 = − �2 + �kma�2 + n2�1 − �� , �27a�

2
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L12 = L21 = − n�kma��1 + �

2
� , �27b�

L13 = L31 = − ��kma� , �27c�

L22 = − �2 +
1 − �

2
�kma�2 + n2, �27d�

L23 = L32 = n , �27e�

and

L33 = 1 + �2��kma�2 + n2�2 − �2 − FLi − FLe. �27f�

The internal and external fluid loading terms, FLi and FLe,
would be the same as in the infinite case if rigid dia-
phragms existed at x=0 and x=L extending from r=0 to 	
for �=0 to 2
; this is not the case in the experimental
setup. Consider the internal loading term first, FLi. At x
=0 the axisymmetric constriction exists at the connection
of the rigid tube to the compliant tube, resulting in an
impedance mismatch. At x=L, while an axisymmetric
constriction does not exist, there is a change from a com-
pliant to a rigid wall, which results in an impedance mis-
match. These end impedances are not infinite, which
would be the case if rigid diaphragms existed. This differ-
ence is expected to have a more significant effect at lower
axial modal orders, with reducing significance as axial
modal order increases, since boundary conditions become
less important as modal order increases. Nonetheless, in
the present theoretical study rigid diaphragms in the inter-
nal fluid at x=0 and L are assumed, and Eq. �16� is used
with the following in place of Eq. �18a�:

�2� cL

ci
�2

= �knma�2 + �kria�2. �28�

With regard to the external fluid loading term, FLe, for
the experimental case the external fluid extends much less
than the wavelength of sound in it; thus, its effect on tube
vibrations is approximated simply as a mass load. This leads
to

FLE = �2�e

�s

heq�heq + 2a�
2ha

, heq = a + hg + h/2, �29�

where hg denotes the depth from the top of the tube to the
free surface of the external fluid. This expression is equiva-
lent to adding to the tube a mass per unit length representing
an external fluid layer of thickness heq completely surround-
ing the tube, where heq is the average distance of a point
on the tube wall to the nearest free surface.

Radial velocity of the tube at axial location x and angu-
lar position � due to the circumferential line force per unit
length Ft at x=x0 can then be expressed in terms of a modal

superposition
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ẇ�x,�,t� = �
n=0

	

�
m=1

	

I33j�
2�2Ft sin�kmx0�

L�sh�2

� sin�m
x/L�cos�n��ej�t, �30�

where I33 is given by Eq. �19b� with values of L defined in
Eqs. �26� and �27�.

B. Theoretical predictions and experimental
measurements

The predicted axisymmetric pressure distribution from
Sec. III was used as an input to the finite-length tube model
to predict the resulting vessel wall axisymmetric radial ve-
locity ẇ as a function of axial position and frequency. Cir-
cumferential line forces per unit length Ft�x , f� were used
every 1.2 mm axially to approximate pt�x , f�, whose magni-
tude was depicted in Figs. 2�a� and 3�a�. Theoretical predic-
tions are shown in Figs. 6�a�, 6�b�, 7�a�, and 7�b� for the flow
cases of ReD=1000 and 2000 for the case of only internal
fluid �fluid-filled tube suspended in air�, and for the case of
internal and external fluid. Also shown in these same figures
are the corresponding experimental measurements of the
tube wall vibration, using laser Doppler vibrometry; see
Figs. 6�c�, 6�d�, 7�c�, and 7�d�. In comparing experimental
cases without and with external fluid loading, it appears that

FIG. 6. �Color online� Constricted compliant tube radial wall velocity �dB
Theory, in air. �b� Theory, submerged in water. �c� Experiment, in air. �d� E
the external fluid loading is primarily acting as a mass load,

1202 J. Acoust. Soc. Am., Vol. 118, No. 2, August 2005
decreasing the frequency of, but not altering, the spatial-
spectral character of the system. Likewise, in comparing
similar cases with ReD=1000 vs ReD=2000, the change in
flow rate appears to alter the intensity of vibration signifi-
cantly, but it alters the spatial-spectral distribution of the vi-
bration less significantly. This emphasizes the importance of
the surrounding structural dynamic properties, which are
consistent and unchanged when flow rate changes.

In comparing the theoretical cases to the experimental
cases, again it appears that some but not all phenomena are
captured. Even if one takes the experimental pressure mea-
surements shown in Figs. 2�b�, 2�c�, 3�b�, and 3�c� and uses
these as an input to the theoretical tube model of Sec. IV, a
closer, but still not exact match to experiment can be
achieved. �Results of this “hybrid” calculation are not
shown.� In the theoretical simulation, all geometric and ma-
terial parameters �Table I� were measured or identified inde-
pendently of this experiment, except the linear viscous
damping term used for latex, �; this value was adjusted based
on a rough comparison of theory and experiment, but was
kept the same in all simulations. Use of a material damping
term with a nonlinear dependence on frequency would have
improved the match between theory and experiment. Also,
during the course of the experimental study, three different
latex tubes were used and some variability of elastic modu-

1 mm/s� as a function of axial position and frequency for ReD=1000. �a�
ment, submerged in water. Online version uses color scale for dB.
re :
xperi
lus, up to 10%, was observed between different tubes and as
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a function of time in the same tube due to usage and aging;
Young’s modulus would decrease slightly after repeated use.

Some experimentally observed dynamics are simply not
captured in the theoretical treatment. It is suspected that the
mean pressure drop immediately after the constriction �see
Fig. 5� does alter the system somewhat in this region, rela-
tive to the theoretical model, which assumed a uniform mean
pressure throughout the length of the compliant tube in de-
termining tube dimensions. As predicted above, due to the
implicit assumption of rigid diaphragms in the fluid at either
end of the flexible tube, the lowest tube structural resonant
modes for the experiment tend to shift down in frequency,
relative to theory, though for modes above the first three,
agreement between theory and experiment is good.

For the experimental cases shown in Figs. 6 and 7, the
mean �head� pressure in the compliant tube was adjusted to
�15 mm Hg gauge by adjusting the height of the upstream
reservoir. It was found that increasing the mean pressure in
the fluid channel substantially increased some, but not all, of
the spectral features of the tube vibration. Figure 8 shows a
case for ReD=1000 with the compliant constricted tube in air
�no external water or gel loading�, but with an internal mean
pressure of �60 mm Hg gauge. The conditions of this case
are identical to that shown in Fig. 6�c� except for the increase

FIG. 7. �Color online� Constricted compliant tube radial wall velocity �dB
Theory, in air. �b� Theory, submerged in water. �c� Experiment, in air. �d� E
in mean pressure of �45 mm Hg. Such a change in pressure
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increases the compliant tube diameter by �8.4% and de-
creases its thickness by �7.7%; this should lower axisym-
metric tube structural resonances by about 7% assuming lin-
ear elasticity. Static tests of tube diameter as a function of

1 mm/s� as a function of axial position and frequency for ReD=2000. �a�
ment, submerged in water. Online version uses color scale for dB.

FIG. 8. �Color online� Measured constricted compliant tube radial wall ve-
locity �dB re : 1 mm/s� as a function of axial position and frequency for
ReD=1000, in air. Effect of head pressure. High tank �Fig. 1� at same height
as in ReD=2000 case resulting in downstream mean pressure of �60 mm
re :
xperi
Hg gauge. Online version uses color scale for dB.
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internal static pressure confirmed that the tube elasticity was
slightly nonlinear, with a �10% increase in elastic modulus
when internal pressure increased from 15 to 60 mm Hg. This
increase actually would counter the effect of the geometric
changes and result in less of a predicted decrease in resonant
frequency. Significant changes are not evident in the frequen-
cies of the first few standing wave patterns for the tube,
below 100 Hz, supporting this analysis.

However, at higher frequencies, there is a significant
change in the spectral content between the two cases �Figs.
6�c� and 8�. This same trend was observed in a number of
experiments at various ReD and mean pressures. While in-
creasing the mean pressure did not significantly alter the
lower frequency standing wave response of the tube, it did
increase the frequency and sometimes sharpen the spectral
content of the higher frequency vibration that was strongest
just downstream of the constriction �from �200 to
�325 Hz for ReD=1000 at 15 and 60 mm Hg mean pres-
sure, respectively�. Theoretical simulations, which used dif-
ferent values for diameter and thickness of the tube depen-
dent on the mean pressure, showed no significant changes in
their prediction of the internal dynamic pressure and tube
vibration when the internal mean pressure was varied from
15 to 60 mm Hg. It is hypothesized that the observed phe-
nomenon is due to nonlinear behavior just downstream of the
constriction that is caused in part by the larger dynamic
forces at this point and the substantially reduced mean pres-
sure immediately distal to the constriction, shown in Fig. 5.
Such behavior in a collapsible tube has been previously
demonstrated.22

V. RADIATION INTO THE SURROUNDING
VISCOELASTIC MEDIUM

A. Theory

Now, consider the axisymmetrically vibrating tube to be
embedded in a viscoelastic phantom material with properties
comparable to soft biological tissue. The term for external
fluid loading, given above in Eq. �29�, may be suitable when,
in fact, the external medium is a fluid. However, when the
tube is embedded parallel to and near the surface of a vis-
coelastic medium, a different approach may be considered.
The elastic and viscous forces of the viscoelastic material
may be non-negligible. Consequently, a composite tube wall
is defined as being composed of the latex material and a
thickness of the gel material taken to be the depth that the
latex is below the free surface, hg. The composite tube thick-
ness hc is thus the combined thickness of the latex material h

FIG. 9. Approximating the radiation of vibro-acoustic energy from the flex-
ible tube vibration with finite dipoles.
and its depth below the surface, hg. The composite Young’s
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modulus Ec is taken to be that of the thickness-weighted sum
of the individual elastic moduli of the Latex and gel material

Ec =
h

hc
EL +

hg

hc
Eg, �31�

with Eg�3�, where � is the complex shear modulus of the

FIG. 10. �Color online� Constricted compliant tube radial wall velocity
�dB re : 1 mm/s� while embedded in soft tissue gel phantom as a function
of axial position and frequency. �a� Theory, ReD=1000. �b� Experiment,
ReD=1000. �c� Theory, ReD=2000. Experimental measurement at ReD

=2000 not possible. Online version uses color scale for dB.
gel phantom material �Table I�. This is then used in place of
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E in Eq. �18d� and the term FLE=0. With these assump-
tions, the radial vibration of the tube wall can be predicted
with Eq. �30� and used as the input to a model that will
predict the resulting motion at the gel surface. Note that
the motion at the phantom surface just above the tube
should closely match that of the tube itself for small val-
ues of hg.

Alternatively, to predict vibratory motion at any location
on the phantom surface or within the phantom, the axisym-
metrically vibrating tube can be approximated via a finite
number of elementary acoustic sources, finite monopoles or
dipoles, spaced sufficiently close together. Given that the
theoretically modeled radial motion of the tube is axisym-
metric, a row of monopoles may seem like a logical ap-
proach. However, monopoles do not generate shear waves,
only compression waves. In the actual experiment, wall mo-
tion will be nonaxisymmetric given the random nature of
turbulence, which would result in the generation of shear
waves in addition to compression waves. Dipoles do radiate
both compression and shear waves, and may result in a more
realistic simulation in some cases for some frequency re-
gimes. In a previous study, it was shown that, for elementary
acoustic sources comparable in dimension to the compliant
tube considered here, and just below the surface of a soft-

FIG. 11. �Color online� Vertical velocity �dB re : 1 mm/s� at phantom su
function of axial position and frequency directly above tube. �a� Dipole the
Experiment, ReD=2000. Online version uses color scale for dB.
tissue viscoelastic phantom material, the resulting phantom
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surface motion is composed of contributions from both shear
and compression waves, with shear wave contributions being
dominant below �100 Hz and near the source and compres-
sion waves becoming dominant above �150 Hz and as one
moves further from the source.30

Two simulation approaches, using monopoles or dipoles,
are developed here. In either case, scattering of the field of
one elementary source caused by another or by itself after
reflection from a boundary is neglected. That is, the mono-
poles and dipoles will be treated as infinitesimal. Addition-
ally, the viscoelastic medium will be considered to be a semi-
infinite half-space. The effect of these assumptions on the
predicted field for single monopole or dipole sources is dis-
cussed in Royston et al.30 Also in Ref. 30, it was shown that,
generally as one moves away from being directly over the
source, the surface response to an infinitesimal monopole or
dipole just below the surface is reasonably approximated by
simply doubling the theoretical response at the location of
the half-space surface that is calculated based on the assump-
tion of an infinite medium. This approximation, and neglect-
ing multiple reflections from the source, is expected to
worsen the match of theory to experiment when measure-

for constricted compliant tube embedded in soft tissue gel phantom as a
ReD=1000. �b� Dipole theory, ReD=2000. �c� Experiment, ReD=1000. �d�
rface
ory,
ments are taken directly over the source.
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1. Monopole approach

For the tube, radial wall velocity is given by Eq. �30�. It
can be calculated at any axial location x and azimuthal angle
�. Suppose its value is calculated at a finite number of points
along the tube with axial resolution �L. The calculated radial
wall displacement at one of these points wx is assumed to
represent the axisymmetric radial motion of that segment of
the tube from x−�L /2 to x+�L /2. The volume displace-
ment of this segment of the tube will be equated to the vol-
ume displacement of a finite monopole of radius am under-
going radial displacement of amplitude u0 and located at the
geometric center of the tube segment it represents. This leads
to

�La2
wx = 4
am
2 u0. �32�

Set 2am equal to �La; then, wx=u0. The corresponding
spherically symmetric radiated field of the monopole is

uR = u0
h1

�2��k�R�
h1

�2��k�am�
ej�t, �33�

where h1
�2� denotes a spherical Hankel function for outgoing

waves, R denotes the distance from the monopole location to

FIG. 12. �Color online� Vertical velocity �dB re : 1 mm/s� at phantom surfac
of constriction as a function of lateral position moving away from the tube. �
downstream, ReD=2000. �c� Experiment at 10 mm downstream, ReD=1000
scale for dB.
the point of measurement, and k� denotes the complex wave
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number for compression wave motion in the viscoelastic
phantom material.30 The vertical response at the free surface
of the gel phantom can then be approximated by summing
the response to all of the monopoles used in the discretiza-
tion, accounting for the angle that the outgoing spherical
wave makes with the vertical direction.

2. Dipole approach

For this case, the tube response is discretized with axial
resolution �L and, this time, azimuthal resolution a��. The
radial displacement calculated at the center of a segment of
the tube extending �L by a�� is denoted as wx�, and that
entire segment of the tube is approximated as having radial
displacement wx�. See Fig. 9. A finite dipole of radius ad

vibrating with amplitude u0 displaces a volume 
ad
2u0 di-

rectly in front of it. This is equated to the volume displace-
ment of the portion of the tube the dipole represents, which
is given by �La��wx�. If one takes 
ad=�La��, then
wx�=u0. The dipole is positioned at the geometric center of
the tube wall segment it represents, and its axis is oriented
normal outward to that segment. The corresponding radiated

constricted compliant tube embedded in soft tissue gel phantom downstream
pole theory at 15 mm downstream, ReD=1000. �b� Dipole theory at 15 mm
Experiment at 10 mm downstream, ReD=2000. Online version uses color
e for
a� Di
. �d�
field is
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uR = N1 cos�����2 + 2jk�R − �k�R�2�e−jk�R + 2N2�− jk�R

− 1�e−jk�R�ej�t/R3, �34�

u� = − N1 sin�����− jk�R − 1�e−jk�R + N2�1 + jk�R

− �k�R�2�e−jk�R�ej�t/R3, �35�

where in this expression � denotes the angle made between
the principle axis of that particular dipole and a vector drawn
from the dipole to the point of measurement.30 Here, R de-
notes the distance from the dipole location to the point of
measurement, uR and u� denote the radial and tangential
components of the generated vibratory field relative to the
dipole, and k� and k� denote the complex wave number of
the radiated compression and shear waves, respectively. Note
that only dipole and measurement point combinations for
which −
 /2���
 /2 are used in the summation; i.e., only
the field radiating radially outward from the vessel wall is
used. The coefficients N1 and N2 can be specified based on
the boundary conditions for “welded” contact or “lossless

FIG. 13. �Color online� Vertical velocity �dB re : 1 mm/s� at phantom su
function of axial and lateral position at 100 Hz. �a� Dipole theory, ReD=10
ReD=2000. Online version uses color scale for dB.
slip” contact. The welded contact case results in
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N1 = − u0a3ejk�a

�
3 + 3jk�a − �k�a�2

�1 + jk�a��k�a�2 + 2�1 + jk�a��k�a�2 − �k�a�2�k�a�2 ,

�36�

N2 = e−j�k�−k��a3 + 3jk�a − �k�a�2

3 + 3jk�a − �k�a�2 . �37�

The vertical response at the free surface is then approximated
by summing the response to all of the dipoles used in the
discretization, taking into account the angle that uR and u�

make with the vertical direction.

B. Theoretical predictions and experimental
measurements

Based on the approaches described above, the radial ve-
locity of the latex tube and the vertical velocity at the gel
surface for the constricted vessel and geometry of Fig. 1
were calculated at points directly above the embedded vessel
and at points lateral to the tube axis downstream of the con-
striction. These results are shown in Figs. 10–13. The theo-
retical predictions in Figs. 11–13 were based on using sets of

for constricted compliant tube embedded in soft tissue gel phantom as a
b� Dipole theory, ReD=2000. �c� Experiment, ReD=1000. �d� Experiment,
rface
00. �
eight dipoles equally spaced circumferentially and axially
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spaced at 2.5 mm to approximate the tube of length L
=100 mm. Increasing the dipole resolution further did not
noticeably alter the results. Predictions using the dipole ap-
proach matched experimental measurements to a greater de-
gree than those using the monopole approach; results based
on the monopole approach are not shown. It is believed that
this is due to the inability of the monopole approach to gen-
erate shear waves. Generally, it was observed experimentally
that the overall vibration levels were greater than predicted
via the dipole approach. This is believed to be partially due
to the finite volume of the viscoelastic phantom resulting in
multiple reflections, which the half-space theory does not
capture.

In comparing Figs. 10�a�–10�c�, 11�c�, and 11�d�, note
that the prediction of the latex radial wall velocity closely
matches the measured radial wall velocity and the measured
gel vertical surface velocity just above the vessel, as ex-
pected given the shallow depth of the vessel ��6.5 mm from
the surface to the top of the latex tube�. The dipole approxi-
mation provides a less accurate prediction �Figs. 11�a� and
11�b��, but still captures the trends in frequency and location.
The dipole approximation also enables a prediction of sur-
face motion not directly over the vessel, capturing experi-
mental trends as shown in Figs. 12 and 13. Experimentally,
and in the theoretical simulation, it is observed that the sur-
rounding viscoelastic gel material substantially, though not
completely, dampens the resonant properties of the water-
filled latex tube, resulting in a more uniform spectral content
epicentered just downstream of the constriction, yet still pos-
sessing substantial frequency content well through several
hundred hertz.

VI. CONCLUSION

The vibration of a thin-walled cylindrical, compliant vis-
coelastic tube with internal flow and an axisymmetric con-
striction that results in turbulent fluid flow was studied theo-
retically and experimentally. The developed closed-form
analytical model of the coupled fluid and structural system
may provide a baseline for future, more comprehensive
analyses, analytical and computational, that may improve
upon some of the indicated shortcomings or extend the ap-
proach to more complex and realistic geometries and mate-
rial properties. Additionally, the reported experimental study
provides a unique and comprehensive set of measurements
and associated discussion relevant to vascular dynamics and
diagnostics.

Vibration of the tube was considered with internal fluid
coupling only, and with coupling to internal flowing fluid and
external stagnant fluid or external tissuelike viscoelastic ma-
terial. The theoretical analysis included the adaptation of a
model for turbulence in the internal fluid and its vibratory
excitation of and interaction with the tube wall and surround-
ing fluid or viscoelastic medium. Analytical predictions com-
pared favorably with experimental measurements. Reasons
for identified discrepancies between theory and experiment
were provided. It was hypothesized that the primary reasons
for these discrepancies were that �1� the empirical turbulence

model did not fully account for compliant tube vibration and
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how it alters the turbulent field, and �2� the linear structural
model of the tube did not capture some of the apparent non-
linear phenomena that were highly dependent upon the mean
pressure within the tube. Note, it did appear that, when the
tube was embedded in the viscoelastic material, the added
inertial and dissipative loading on the tube attenuated these
sources of discrepancy.

Extension of the theoretical modeling approach to more
realistic and complex geometries may require numerical ad-
aptations to predict the resulting transitional or turbulent
flow field and surrounding solid tissue vibration in this
highly coupled system. However, the analytical model pro-
vided here could be used to validate numerical techniques.
Additionally, the developed theory could be used to provide
estimates of the dynamic forces in vivo that relate to pathol-
ogy and may be difficult or impossible to measure directly,
such as the dynamic stress levels created in a vascular wall
due to turbulent flow. Also, it is envisioned that the devel-
oped theoretical and experimental techniques may be helpful
in evaluating and improving medical diagnostic technologies
that utilize audible frequency phenomena generated below
the skin surface to provide diagnostic information as an
acoustic image or in another form.
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